pTrc99A
Ancestors
Derivated
- pTadhB
- pTadhB-pdc
- pYF-1
- pTrcDx
- pTrpE(S40F)
- P1
- P2
- P3
- pTY2
- pTY4
- pTY9
- pTrcA*
- pTrcA*H
- pTrcA*HpTrcthrA*
- pTrcA*HpTrcnadk
- pTrcA
- pJNU-3
- p10499A
- pMEE1
- pTrc99a-cysB
- pTrcpheAfbr
- pTrc-ant3
- pR1
- pR2
- pTrc99A-hemA
- pZPW72
- pTrc99a-mdh
- pTrc99a-pncB
- pTrc99a-ppc
- pTrc99a-pyc
- pTrc99a-Bspck
- pTA03
- pTA04
- pTA05
- pTrc-ectABC
- pTrc-TPH
- pTrc-BlINMT
- pTrc-HsINMT
- pTrc-NpINMT
- pTrc-EsPaNMT
- pTrc-HsPeNMT
- pTrc-AtPNMT
- pTrc-RgANMT
- pTrc-DHsI*
- pTwFS
- pTaFS
- pTispAaFS
- pTispANaFS
- pTispALaFS
- pTispA
- pTispA-pgpC
- pTrc99a-leuAfbr-cgb
- pTrc99a-leuAfbr-ecj
- pTrc99a- iaa1
- pTrc99a-iaa2
- pTrc99a-iaa3
- pTrc99a-iaa4
- pTrc99a-iaa5
- pTrc99a-iaa6
- pTrc99a-iaa9
- pTrc99A-alaD
- pQ-2
- pQ-1
- pQ-3
- pQ-4
- pTRC1
- pTRC2
- pTRCAB1
- pTRCAB2
- pTRCABI
- pTRCABI+
- pTrc99a-cysE
- pTrc99a-cysEf
- pTrc99a-cysEf -cysB
- pTrc99a-sbp
- pTrc99a-cysUWA
- pTrc99a-cysP
- pTrc99a-cysB
- pTrc99a-cysEf-ydeD
- pTrc99a-FadR
- pTrc99a-FabR
- pTrc99a-RpoS
- pTrc99a-ArcA
- pTrc99a-PdhR
- pTrc99a-FruR
- pTrc99a-IclR
- pTrc99a-Crp
- pTrc99a-Lrp
- pTrc99a-NarL
- pDVIO-1
- pDVIO-4
- pDVIO-5
- pDVIO-6
- pDVIO-7
- pTRP-MT-1
- pSynPPC1
- pSynPPC2
- pSynPPC3
- pSynPPC4
- pSynPPC5
- pSynPPC6
- pSynPPC7
- pSynPPC8
- pSynPPC9
- pSynPPC10
- pSynPPC11
- pSynPPC12
Main features
Ptrc, ColE1 ori, lacISelection marker:
Ampicillin
Strains harboring plasmid pTrc99A
- Escherichia coli S028/pTrc99A
- Escherichia coli DH5α/pTrc99A, pLyc184
- Escherichia coli NMS-0
- Escherichia coli VAL16
References
- Fithriani, Prayoga Suryadarma & Djumali Mangunwidjaja (2015). Metabolic Engineering of Escherichia coli Cells for Ethanol Production under Aerobic Conditions. Procedia Chemistry.
- Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim & Han Min Woo (2010). In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production▿ †. Applied and Environmental Microbiology.
- Lin Chen, Minliang Chen, Chengwei Ma & An-Ping Zeng (2018). Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metabolic Engineering.
- Du, L., Zhang, Z., Xu, Q., & Chen, N. (2019). New strategy for removing acetic acid as a by-product during L-tryptophan production. Biotechnology & Biotechnological Equipment, 33(1), 1471–1480.
- Mi Tang, Xuewei Pan, Tianjin Yang, Jiajia You, Rongshuai Zhu, Taowei Yang, Xian Zhang, Meijuan Xu, Zhiming Rao (2023). Multidimensional engineering of Escherichia coli for efficient synthesis of L-tryptophan. Bioresource Technology. 386.
- Byoungjin Kim, Robert Binkley, Hyun Uk Kim & Sang Yup Lee (2018). Metabolic engineering of Escherichia coli for the enhanced production of l‐tyrosine. Biotechnology & Bioengineering.
- Mireille Ginesy, Jaroslav Belotserkovsky, Josefine Enman, Leif Isaksson & Ulrika Rova (2015). Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microbial Cell Factories.
- Yu Deng, Ning Ma, Kangjia Zhu, Yin Mao, Xuetuan Wei & Yunying Zhao (2018). Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metabolic Engineering.
- L Stols & M I Donnelly (1997). Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Applied and Environmental Microbiology.
- Han Liu, Yehua Hou, Yu Wang & Zhimin Li (2019). Enhancement of Sulfur Conversion Rate in the Production of l‑Cysteine by Engineered Escherichia coli. Journal of Agricultural & Food Chemistry.
- José Luis Báez‐Viveros, Joel Osuna, Georgina Hernández‐Chávez, Xavier Soberón, Francisco Bolívar & Guillermo Gosset (2004). Metabolic engineering and protein directed evolution increase the yield of L‐phenylalanine synthesized from glucose in Escherichia coli. Biotechnology & Bioengineering.
- Vo, Toan Minh & Park, Sunghoon. Metabolic engineering of Escherichia coli W3110 for efficient production of homoserine from glucose. Metabolic Engineering. 2022, 73, 104-113.
- Pu, W., Chen, J., Zhou, Y. et al. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. Biotechnol Biofuels 16, 31 (2023).
- Jiang, Youming; Zheng, Tianwen; Ye, Xiaohan; Xin, Fengxue; Zhang, Wenming; Dong, Weiliang; Ma, Jiangfeng & Jiang, Min. Metabolic engineering of Escherichia coli for l-malate production anaerobically. Microbial Cell Factories. 2020, 19(1).
- Wu, Weibin; Chen, Maosen; Li, Chenxi; Zhong, Jie; Xie, Rusheng; Pan, Zhibin; Lin, Junhan & Qi, Feng. Efficient production of phenyllactic acid in Escherichia coli via metabolic engineering and fermentation optimization strategies. Frontiers in Microbiology. 2024, 15.
- Hao Zhang, Zhong Liang, Ming Zhao, Yanqin Ma, Zhengshan Luo, Sha Li & Hong Xu (2022). Metabolic Engineering of Escherichia coli for Ectoine Production With a Fermentation Strategy of Supplementing the Amino Donor. Frontiers in Bioengineering and Biotechnology.
- Li, Qingchen; Li, Chenxi; Zhong, Jie; Wang, Yukun; Yang, Qinghua; Wang, Bingmei; He, Wenjin; Huang, Jianzhong; Lin, Shengyuan & Qi, Feng. Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis. Metabolic Engineering. 2025, 87, 49-59.
- Wang, Chonglong; Yoon, Sang-Hwal; Jang, Hui-Jeong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung & Kim, Seon-Won. Metabolic engineering of Escherichia coli for α-farnesene production. Metabolic Engineering. 2011, 13(6), 648-655.
- Chen, Chen; Wang, Tiantian; Ye, Pan & Li, Naiqiang. Metabolic engineering of Escherichia coli for the efficient production of 5-hydroxyvaleric acid. Process Biochemistry. 2023, 130, 625-633.
- Wu, Hongxuan; Yang, Jinhua; Shen, Peijie; Li, Qingchen; Wu, Weibin; Jiang, Xianzhang; Qin, Lina; Huang, Jianzhong; Cao, Xiao & Qi, Feng. High-Level Production of Indole-3-acetic Acid in the Metabolically Engineered Escherichia coli. Journal of Agricultural and Food Chemistry. 2021, 69(6), 1916-1924.
- Yang, Hui; Zhang, Bo; Wu, Zi-Dan; Chen, Li-Feng; Pan, Jia-Yuan; Xiu, Xiao-Ling; Cai, Xue; Liu, Zhi-Qiang & Zheng, Yu-Guo. Combinatorial Metabolic Engineering of Escherichia coli for Enhanced L-Cysteine Production: Insights into Crucial Regulatory Modes and Optimization of Carbon-Sulfur Metabolism and Cofactor Availability. Journal of Agricultural and Food Chemistry. 2023, 71(36), 13409-13418.
- Tang, Mi; Pan, Zhenhui; Jin, Minghui; Zhang, Hengwei; Pan, Xuewei & Rao, Zhiming. Systems metabolic engineering of Escherichia coli for the high-level production of deoxyviolacein, a natural colorant. Bioresource Technology. 2025, 431, 132584.
- Chan Woo Song, Joungmin Lee, Yoo-Sung Ko & Sang Yup Lee (2015). Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metabolic Engineering.