Escherichia coli BW25113
Ancestors
Derived strains
- Escherichia coli JW2944
- Escherichia coli BW25113 (pTadhB-pdc)
- Escherichia coli AQ02
- Escherichia coli AQ04
- Escherichia coli AQ09
- Escherichia coli N00
- Escherichia coli BW25113/F'
- Escherichia coli BW25113-pGLY-1
- Escherichia coli EXY-1
- Escherichia coli BW25113 ∆aceK
- Escherichia coli BW25113 ∆aceA
- Escherichia coli BW25113 ∆aceAK
- Escherichia coli BW25113 ∆caiA
- Escherichia coli BW25113 ∆pcaiF caiF-p8
- Escherichia coli BW25113 ∆pcai cai-p37
- Escherichia coli BW25113 ∆aceK ∆pcai cai-p37
- Escherichia coli BW25113 ∆aceK ∆caiA ∆pcai cai-p37
- Escherichia coli BW25113 ΔilvE::KmR
- Escherichia coli BW25113(DE3)
- Escherichia coli ET1
- Escherichia coli ET2
- Escherichia coli ET4
- Escherichia coli BAK5
- Escherichia coli BHS1
- Escherichia coli BHS2
- Escherichia coli M-1
- Escherichia coli N1
- Escherichia coli N5
- Escherichia coli BW01
- Escherichia coli JW2720
- Escherichia coli JW3582
- Escherichia coli JW3331
- Escherichia coli JW2732
- Escherichia coli JW2733
- Escherichia coli JW2734
- Escherichia coli JW2407
- Escherichia coli JW2414
- Escherichia coli LH1A
- Escherichia coli LH2A
- Escherichia coli LH1C
- Escherichia coli LH2C
- Escherichia coli LH1B
- Escherichia coli LH2B
- Escherichia coli LH1M
- Escherichia coli LH2M
- Escherichia coli LH1H
- Escherichia coli LH2H
- Escherichia coli LH1K
- Escherichia coli LH2K
- Escherichia coli LH1E
- Escherichia coli LH2E
- Escherichia coli LH2AC1BMH
- Escherichia coli LH2A1M
- Escherichia coli BW25113-pLH03
- Escherichia coli JW0452
- Escherichia coli JW0451
- Escherichia coli JW3233
- Escherichia coli JW3234
- Escherichia coli JW2660
- Escherichia coli JW2661
- Escherichia coli JW0862
- Escherichia coli JW0863
- Escherichia coli JW0940
- Escherichia coli JW2203
- Escherichia coli JW0912
- Escherichia coli JW0554
- Escherichia coli JW0799
- Escherichia coli JW5503
- Escherichia coli JW3832
- Escherichia coli WT/pDES/pCA24N
- Escherichia coli WT/pDES/pGlpE
- Escherichia coli BW25113ΔtnaA
- Escherichia coli BW25113ΔtnaA (F´)
Genotype with respect to parental
IacIq rrnBT14 ∆lacZWJ16 hsdR514 ∆araBADAH33 ∆rhaBADLD78
Genotype with respect to wild type
F+ (λ) | IacIq rrnBT14 ∆lacZWJ16 hsdR514 ∆araBADAH33 ∆rhaBADLD78Bars (|) indicate differences between strains.
Production
| Metabolites | Production type | Production | Biomass | Carbon source | Time | Scale | Ref. |
|---|---|---|---|---|---|---|---|
| ethanol | Titer | 0.2 g/L | 18 h | Flask | [143] | ||
| L-carnitine | Titer | 14.23 mM * | Flask | [241] | |||
| L-carnitine | Titer | 16.62 mM * | Flask | [241] | |||
| L-carnitine | Titer | 0.0 mM * | Flask | [241] | |||
| L-carnitine | Titer | 0.0 mM * | Flask | [241] | |||
| L-histidine | Titer | 0.0 mg/L | Flask | [291] | |||
| L-arginine | Titer | 0.07 g/L | 14.4 OD600 | Flask | [300] | ||
| pyruvate | Titer | 2.6 g/L | 14.4 OD600 | Flask | [300] |
* Inferred from plots using RetroPlot.
Heterologous.
Target metabolites are shown in bold, while non-bold metabolites represent intermediates or potential byproducts.
References
- Tomoya Baba, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner & Hirotada Mori (2006). Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular Systems Biology.
- Fithriani, Prayoga Suryadarma & Djumali Mangunwidjaja (2015). Metabolic Engineering of Escherichia coli Cells for Ethanol Production under Aerobic Conditions. Procedia Chemistry.
- Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact. 2020 Jun 11;19(1):129.
- Shasha Zhang, Wei Yang, Hao Chen, Bo Liu, Baixue Lin & Yong Tao (2019). Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microbial Cell Factories.
- Yu Deng, Yin Mao & Xiaojuan Zhang (2015). Metabolic engineering of E. coli for efficient production of glycolic acid from glucose. Biochemical Engineering Journal.
- Arense, Paula; Bernal, Vicente; Charlier, Daniël; Iborra, José Luis; Foulquié-Moreno, Maria Remedios & Cánovas, Manuel. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli. Microbial Cell Factories. 2013, 12(1).
- Ryo Osawa, Tomoyuki Kamide, Yasuharu Satoh, Yusuke Kawano, Iwao Ohtsu & Tohru Dairi (2018). Heterologous and High Production of Ergothioneine in Escherichia coli. Journal of Agricultural & Food Chemistry.
- Hou, Yanan; Liu, Xue; Li, Shilin; Zhang, Xue; Yu, Sili & Zhao, Guang-Rong. Metabolic Engineering of Escherichia coli for de Novo Production of Betaxanthins. Journal of Agricultural and Food Chemistry. 2020, 68(31), 8370-8380.
- Pengfei Gu, Qianqian Ma, Shuo Zhao, Qiang Li & Juan Gao (2023). Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. Biotechnology for Biofuels and Bioproducts.
- Nie, Mengzhen; Wang, Jingyu & Zhang, Kechun. A novel strategy for l-arginine production in engineered Escherichia coli. Microbial Cell Factories. 2023, 22(1).
- Yang, Hui; Zhang, Bo; Wu, Zi-Dan; Chen, Li-Feng; Pan, Jia-Yuan; Xiu, Xiao-Ling; Cai, Xue; Liu, Zhi-Qiang & Zheng, Yu-Guo. Combinatorial Metabolic Engineering of Escherichia coli for Enhanced L-Cysteine Production: Insights into Crucial Regulatory Modes and Optimization of Carbon-Sulfur Metabolism and Cofactor Availability. Journal of Agricultural and Food Chemistry. 2023, 71(36), 13409-13418.
- Takeshi Nakatani, Iwao Ohtsu, Gen Nonaka, Natthawut Wiriyathanawudhiwong, Susumu Morigasaki & Hiroshi Takagi (2012). Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli. Microbial Cell Factories.
- Han Liu, Yu Wang, Yehua Hou & Zhimin Li (2020). Fitness of Chassis Cells and Metabolic Pathways for l‑Cysteine Overproduction in Escherichia coli. Journal of Agricultural & Food Chemistry.
- Kawano, Yusuke; Onishi, Fumito; Shiroyama, Maeka; Miura, Masashi; Tanaka, Naoyuki; Oshiro, Satoshi; Nonaka, Gen; Nakanishi, Tsuyoshi & Ohtsu, Iwao. Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli. Applied Microbiology and Biotechnology. 2017, 101(18), 6879-6889.